The reduction kinetics of NADPH:cytochrome P-450 reductase have been investigated by the laser flash photolysis technique, using the semiquinone of 5-deazariboflavin (5-dRfH.) as the reductant. Transients observed at 470 nm at neutral pH indicated that the oxidized reductase was reduced via second-order kinetics with a rate constant of 6.8 X 10(7) M-1 s-1. The second-order rate constant corresponding to the formation of the protein-bound semiquinone (measured at 585 nm) was essentially the same as that obtained at 470 nm (7.1 X 10(7) M-1 s-1). Subsequent to this rapid formation of protein-bound semiquinone, a partial exponential decay was observed at 585 nm. The rate of this decay remained invariant with protein concentration between pH 5.0 and 7.0, and a first-order rate constant of 70 s-1 was obtained for this process. This is assigned to intramolecular electron transfer from FADH. to FMN. Prior reduction of the enzyme to the one-electron level led to a decrease in both the second-order rate constant for reduction (2 X 10(7) M-1 s-1) and the first-order intraflavin electron transfer rate constant (15 s-1). The protein-bound FAD moiety of FMN-depleted reductase was reduced by 5-dRfH. with a second-order rate constant that was identical with that observed with the native enzyme (6.9 X 10(7) M-1 s-1). However, with this species no significant decay of the FAD semiquinone was observed at 585 nm following its rapid formation, consistent with the above assignment of this kinetic process.(ABSTRACT TRUNCATED AT 250 WORDS)
Peripheral blood mononuclear cells (PBMCs) were recovered from platelet units of 61 blood donors who were HTLV-I positive and 3 blood donors who were HTLV-I negative on enzyme-linked immunosorbent assay (ELISA). Western blot analyses were performed on the sera and DNA was prepared from the PBMCs and analyzed by the polymerase chain reaction (PCR). Of the 61 repeatably reactive samples, 2 were positive, 26 were negative, and 33 were interpreted as indeterminate on Western blot. HTLV-II sequences were detected by PCR in one of the Western blot-positive samples, as well as in one Western blot-indeterminate sample that showed reactivity to p24 only. HTLV-I sequences were detected in the second Western blot-positive sample. HTLV sequences were not detected in the remaining samples, which suggested that the majority of individuals with indeterminate results on Western blots that used one set of commercially available reagents are not infected with HTLV. It is demonstrated in this study that PCR can be used not only to resolve the infection status of individuals with indeterminate Western blots but also to distinguish between HTLV-I and HTLV-II.
Diethyl pyrocarbonate (DEP) is an electrophilic reagent that is used to modify reversibly the histidine residues of proteins. Unfortunately, the lability of the acylated histidine adduct usually does not permit the isolation and identification of the modified histidine. By use of 500-MHz proton NMR spectroscopy, it has been possible to identify the C-H resonances of the nonaxial histidines of trypsin-solubilized bovine, rabbit, and porcine cytochrome b5 and therefore observe the interaction of DEP with specific histidine residues of cytochrome b5. In addition, the pKa of the peripheral histidines of bovine and rabbit cytochrome b5 have been measured in D2O. In the bovine protein it was found that the histidines are modified sequentially with increasing DEP concentration in the order His-26 greater than His-15 greater than His-80. This order is maintained in the rabbit protein with the following additions: His-26 approximately His-27 greater than His-15 greater than or equal to His-17 greater than His-80. The relative reactivity of the peripheral histidines with DEP was rationalized by considering three of their characteristics: (1) the pKa of the histidine, (2) the fraction of the side chain exposed to the solvent, and (3) the hydrogen-bond interactions of the imidazole ring.
A recombinant protein of the human T cell lymphotropic virus type I (HTLV-I) gp46 outer membrane envelope, MTA-4 (residues 129-203), reacted by Western blot with sera from HTLV-I-infected individuals from the United States and Jamaica but not with 24 (10%) of 242 Japanese sera. A related gp46 recombinant protein, MTA-1 (residues 162-209), reacted with all 58 sera from HTLV-I-infected US and Jamaican individuals and 238 of 242 sera from infected Japanese (combined sensitivity of 99%). Neither recombinant showed reactivity to sera from HTLV-II-infected individuals or uninfected controls. The reactivity of recombinant proteins containing the region of HTLV-II gp46 analogous to MTA-1 was also evaluated by Western blot: GH2-K15 (residues 157-205) and GH2-K55 (residues 162-205) reacted with 88 (98%) and 89 (99%), respectively, of 90 sera from HTLV-II-infected individuals but not with sera from HTLV-I-infected individuals or uninfected controls. These recombinant proteins should permit the development of assays to unambiguously confirm and differentiate HTLV-I and HTLV-II infections.
The identification and isolation of unique and immunogenic recombinant epitopes for human T cell lymphotrophic virus (HTLV) type I might allow the development of an antibody-based assay to differentiate between HTLV-I and HTLV-II infections. To test the feasibility of this approach, an HTLV-I envelope epitope was isolated by immunoscreening of a lambda gt11 recombinant HTLV-I DNA library with a human monoclonal antibody to HTLV-I. This recombinant epitope. MTA-4, when tested with sera from HTLV-I- or HTLV-II-infected individuals, was reactive with all HTLV-I and nonreactive with all HTLV-II antisera. These results indicate that MTA-4 is a unique and immunodominant epitope on HTLV-I and confirm the usefulness of human-derived monoclonal antibodies in an experimental approach to dissect the human humoral response to a viral pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.