2015
DOI: 10.3788/aos201535.0512004
|View full text |Cite
|
Sign up to set email alerts
|

Laser Heterodyne Interferometric Signal Processing Method with Compensation at Unstable Zero Phase Difference Based on Pulse Counting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 0 publications
0
3
0
Order By: Relevance
“…From the mathematical model, reduction of the fluctuation amplitude of the frequency difference is a way to reduce the phase fluctuation, but the frequency stability of one of the better commercial dual frequency lasers can only reach 1 kHz, which is still too large and would cause an obvious error in phase metering. Frequency reduction is verified to be an effective method to reduce the frequency fluctuation [21,22]. In this study, a stabilized He-Ne laser with two acousto-optic modulators (AOM) is adopted to generate dual frequency beams [9,23], wherein two AOM (Gooch and Housego AOMO 3080-125) with adjustable RF drivers (AODS Synth DDS 8 CH) are employed, as shown in Figure 7.…”
Section: Experiments and Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…From the mathematical model, reduction of the fluctuation amplitude of the frequency difference is a way to reduce the phase fluctuation, but the frequency stability of one of the better commercial dual frequency lasers can only reach 1 kHz, which is still too large and would cause an obvious error in phase metering. Frequency reduction is verified to be an effective method to reduce the frequency fluctuation [21,22]. In this study, a stabilized He-Ne laser with two acousto-optic modulators (AOM) is adopted to generate dual frequency beams [9,23], wherein two AOM (Gooch and Housego AOMO 3080-125) with adjustable RF drivers (AODS Synth DDS 8 CH) are employed, as shown in Figure 7.…”
Section: Experiments and Discussionmentioning
confidence: 99%
“…It cannot be directly interpreted by air turbulence or other environmental factors or the repeatability of the phase-detecting electronics, because its fluctuation period is the same as the frequency fluctuation, which is mainly resulted from frequency fluctuation. Frequency fluctuation is a common phenomenon and can reach tens or hundreds of kHz, which has been also observed by other scholars [21,22]. These authors presented a dynamic base signal with a phase-locked loop to track the changing frequency in their frequency mixing and frequency reduction, but they did not mention the phase fluctuation, nor did they investigate the reason or mechanism.…”
Section: Introductionmentioning
confidence: 96%
“…A signal processing method based on rising edge locking with a high frequency clock signal was applied to determine the phase difference between the measurement and reference signals of the heterodyne interferometer. The phase measurement resolution was about 0.073° and the displacement measurement resolution was better than 0.2 nm [22,23].…”
Section: Methodsmentioning
confidence: 96%