Geochemical and mineralogical characterization studies play an important role in the definition of mineral deposits. Each mineral system has a unique set of minerals with different chemical makeup and physical properties. Platinum-group elements (PGEs), for example, are scarce resources with many applications. The optimization of extraction process efficiency is therefore crucial to prevent resource shortage and increased bulk prices. To improve the mineral liberation process, high throughput sensors must be added alongside the production line as part of fast process analysis implementation. Current analytical methods are either ineffective to assess PGE content, or unusable in the conditions of the processing facilities. This article shows how Laser-induced breakdown spectroscopy (LIBS) technology, developed by ELEMISSION Inc, can circumvent these drawbacks by enabling automated, ultra-fast, and precise quantitative mineral analyses in any working environment. The drill core samples that were used in this study were collected at the Stillwater platinum group element mine in the United States. The data used for the mineralogical database was validated using the TESCAN Integrated Mineral Analyzer (TIMA) instrument.