The doubly excited valence (3p+3p) 2 (1)Delta(g) state of Na(2) is experimentally observed by using optical-optical double resonance spectroscopy. A single line Ar(+) laser (a total of nine lines) was used to pump the sodium dimers from thermally populated ground state X (1)Sigma(g) (+) to the intermediate B (1)Pi(u) state. Then, a single mode Ti:sapphire laser was used to probe the doubly excited 2 (1)Delta(g) state. Violet fluorescence emitted from the highly excited states (mainly 2 (3)Pi(g) or 3 (3)Pi(g) states which are transferred from 2 (1)Delta(g) state via collision) to the a (3)Sigma(u) (+) state was monitored by a filtered photomultiplier tube (PMT). A total of 582 rovibrational levels of 2 (1)Delta(g) state were observed, identified, and assigned to the vibrational and rotational quantum numbers in the range of 0< or =v< or =28 and 11< or =J< or =99, respectively. The absolute vibrational quantum number assignment was verified by comparing the totally resolved fluorescence with the calculated Franck-Condon factors between 2 (1)Delta(g) state and B (1)Pi(u) state. Dunham coefficients and Rydberg-Klein-Rees potential curve were derived from these observed quantum levels. The primary molecular constants of Na(2) 2 (1)Delta(g) state are T(e)=32 416.759(15) cm(-1), omega(e)=124.8484(36) cm(-1), B(e)=0.119 158(3) cm(-1), and R(e)=3.508 20(5) A.