2006
DOI: 10.1134/s1063780x06020061
|View full text |Cite
|
Sign up to set email alerts
|

Laser spectroscopy for measuring the parameters of a plasma containing helium and argon

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
1

Year Published

2008
2008
2011
2011

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 3 publications
0
7
0
1
Order By: Relevance
“…The factor amounts to 15% and hence this is about the accuracy of the rate coefficient, provided all other parameters are known. On the other hand, once the rate coefficient σ v 3 3 P o →3 3 D has been measured with sufficient accuracy, the decay of the fluorescence signal at λ = 587.6 nm following a laser pulse at λ = 388.9 nm could possibly be used to derive the local electron density (n e measurements in low temperature plasmas have been reported, either from the ratio of time integrated (laser-and collision-induced) fluorescence signals [40,41] or from the time trace of the collision-induced signals at λ = 388.9 nm after a laser excitation at λ = 587.6 nm [42]). The convenience of this LIF-based measurement when compared with absolute population determination is that only relative fluorescence signals are needed (no absolute calibration of the observation system is necessary; exact laser adjustment is not crucial).…”
Section: First Resultsmentioning
confidence: 99%
“…The factor amounts to 15% and hence this is about the accuracy of the rate coefficient, provided all other parameters are known. On the other hand, once the rate coefficient σ v 3 3 P o →3 3 D has been measured with sufficient accuracy, the decay of the fluorescence signal at λ = 587.6 nm following a laser pulse at λ = 388.9 nm could possibly be used to derive the local electron density (n e measurements in low temperature plasmas have been reported, either from the ratio of time integrated (laser-and collision-induced) fluorescence signals [40,41] or from the time trace of the collision-induced signals at λ = 388.9 nm after a laser excitation at λ = 587.6 nm [42]). The convenience of this LIF-based measurement when compared with absolute population determination is that only relative fluorescence signals are needed (no absolute calibration of the observation system is necessary; exact laser adjustment is not crucial).…”
Section: First Resultsmentioning
confidence: 99%
“…However, this requires additional calibration and adjustment effort. The maximum signal amplitudes of both signals at the laser wavelength and the one induced by collisions are strongly correlated to the initial population density of the lower level 2 3 S, which has a maximum at electron temperatures of T e ≅ 20 -50 eV depending on the value of n e . This is demonstrated for the collision-induced signal in FIGURE 2 (b) and for the signal at the laser wavelength in FIGURE 3 (a) − the values of population densities relative to the ground state population are plotted without rescaling.…”
Section: Derivation Of the Electron Density From Laser-and Collision-mentioning
confidence: 95%
“…The electron density in the range n e = 10 11 -10 12 cm -3 in a helium plasma of T e ≈ 5 eV was determined by Tsuchida et al [2] from the ratio of time integrated collision-induced (λ = 667.8 nm) and laserinduced fluorescence signals upon the laser excitation at λ = 501.6 nm in singlet helium. Shcheglov et al [3] determined electron densities of n e ≈ 5 × 10 11 cm -3 in an argon plasma (T e ≈ 10 eV) with helium content using relative collision-induced signals I 388.9 nm /I 706.5 nm upon laser excitation at λ = 587.6 nm.…”
Section: Derivation Of the Electron Density From Laser-and Collision-mentioning
confidence: 99%
See 1 more Smart Citation
“…В настоящее время существуют перестраиваемые лазеры на красителях с энергией в несколько де-сятков мДж в импульсе, что вполне достаточно для проведения измерений на ИТЭР с учётом потерь энергии лазерного излучения в оптическом тракте от лазерного источника до плазмы дивертора. В мо-дельных экспериментах на установке ПН-3 [4,5] использовался лазерный источник, максимальная энер-гия импульса которого достигала 12 мДж. Низкая энергия в импульсе обеспечивает большой ресурс ра-боты без смены красителя, а также возможность производить измерения даже при значительном умень-шении пропускания оптического тракта ввода лазерного луча в область диверторной плазмы.…”
Section: заключениеunclassified