The Late Ordovician (Hirnantian) glaciation is examined through the North Gondwana record. This domain extended from southern high palaeo-latitudes (southeastern Mauritania, Niger) to northern lower palaeo-latitudes (Morocco, Turkey) and covered a more than 4000 km-wide section perpendicular to ice-flow lines. A major mid-Hirnantian deglaciation event subdividing the Hirnantian glaciation in two first-order cycles is recognised. As best illustrated by the glacial record in western Libya, each cycle comprises 2-3 glacial phases separated by ice-front retreats several hundreds kilometres to the south. From ice-proximal to ice-distal regions, the number of glacial surfaces differentiates (i) a continental interior with post-glacial reworking of the glacial surfaces), (ii) a glaciated continental shelf that is subdivided into inner (1-2 surfaces), middle (2-5 surfaces) and outer (a single surface related to the glacial maximum) glaciated shelves, and (iii) the non-glaciated shelf. Ice-stream-generated glacial troughs, 50-200 km in width, cross-cut these domains. These troughs are zones of preferential glacial erosion and subsequent sediment accumulation. A glacial depositional sequence, bounded by two glacial erosion surfaces, records one glacial phase. The position either within or outside a glacial trough controls the stratigraphic architecture of a glacial sequence. Glaciomarine outwash diamictites are developed at or near the maximum position of the ice-front. During ice-sheet recession, and in an ice-stream-generated trough, a relatively thin sediment cover blankets the foredeepened erosion surface. An initial rapid ice-sheet withdrawal is inferred. Marine-terminating ice fronts then evolve later into more slowly retreating, land-terminating ice fronts. In adjacent inter-stream areas where a more gradual ice-sheet recession occurred, fluvioglacial deposits prevailed. The progradation of a delta-shelf system, coeval with fluvial aggradation, that may be locally interrupted by a period of isostatic rebound, characterises the late glacial retreat to interglacial conditions. This model should facilitate the sequence stratigraphic interpretation of Late Ordovician glacial deposits and other ancient glacial successions.