Investigated for d 18 O and d 13 C isotopes, mineralogy and growth rate, a 20 cm long and 230Th-dated calcite stalagmite from Kalakot (Jammu and Kashmir Himalaya), has recorded high resolution precipitation variability during the Pleistocene-Holocene transition. At present, the study area is influenced by both the Indian Summer Monsoon (ISM) and Westerlies. The StalAge model indicates that the stalagmite grew between 16.3 ka to 9.5 ka BP under the ideal isotopic equilibrium conditions as revealed by the Hendy test results. The d18 O and d 13 C values range from -5.41 to -8.82% and -7.09 to -10.84% respectively. Although the U/Th chronology is poor due to low Uranium content in the samples resulting in relatively large errors, the first stalagmite inferred precipitation variability reconstructed from NW Indian Himalaya makes this study significant. The near footprints of three global events, e.g., Older Dryas (OD), Allerød period and Younger Drays (YD) can be noticed at ~14.3-13.9, 13.9-12.7 and 12.7-12.2 ka BP. The precipitation strength was weaker during the OD and YD, but was stronger during the Allerød interstadial. By the termination of YD interval, the climate seems fluctuating in the NW Himalaya. There seems variation in commencement, duration and termination of the above mentioned events in different parts of the globe due to latitude location and response time.