Understanding the population dynamics of megafauna that inhabited the mammoth steppe provides insights into the causes of extinctions during both the terminal Pleistocene and today. Our study area is Alaska's North Slope, a place where humans were rare when these extinctions occurred. After developing a statistical approach to remove the age artifacts caused by radiocarbon calibration from a large series of dated megafaunal bones, we compare the temporal patterns of bone abundance with climate records. Megafaunal abundance tracked ice age climate, peaking during transitions from cold to warm periods. These results suggest that a defining characteristic of the mammoth steppe was its temporal instability and imply that regional extinctions followed by population reestablishment from distant refugia were characteristic features of ice-age biogeography at high latitudes. It follows that long-distance dispersal was crucial for the long-term persistence of megafaunal species living in the Arctic. Such dispersal was only possible when their rapidly shifting range lands were geographically interconnected. The end of the last ice age was fatally unique because the geographic ranges of arctic megafauna became permanently fragmented after stable, interglacial climate engendered the spread of peatlands at the same time that rising sea level severed former dispersal routes. (10,000-45,000 calendar y ago) when some 65% of terrestrial megafauna genera (animals weighing >45 kg) became globally extinct (1). Based on what we know about recent species extinctions, the causes of extinction are usually synergistic, often species-specific, and therefore, complex, which implies that there is no universal explanation for end-Pleistocene extinctions (2, 3). Globally and specifically in the Arctic (3-10), megafaunal extinctions have been variously blamed on overhunting, rapid climate change, habitat loss, and introduced diseases (3-10). Further complicating a clear understanding of the causes of ice-age extinctions is that the magnitude and tempo of environmental change during the last 100,000 y of the Pleistocene were fundamentally different than during the Holocene (11), and these differences had far-reaching implications for community structure, evolution, and extinction causes (12).A recent survey comparing the extinction dates of circumboreal megafauna with ice-age climate suggests that extinctions and genetic turnover were most frequent during warm, interstadial events (13). However, the mechanisms for these extinctions remain unclear, partly because this previous study considered multiple taxa living in many different ecosystems. Here, we focus on five megafaunal species that coinhabited a region of the Arctic with an ecological setting that is relatively well-understood. To avoid the methodological problems involved in pinpointing extinction dates (13), we infer population dynamics from changes in the relative abundance of megafauna over time. Using a uniquely large dataset of dated megafaunal bones from one particular area, we t...