In this paper, after reconstructing the redshift evolution of the Hubble function by adopting Gaussian process techniques, we estimate the best-fit parameters for some flat Friedmann cosmological models based on a modified Chaplygin gas interacting with dark matter. In fact, the expansion history of the Universe will be investigated because passively evolving galaxies constitute cosmic chronometers. An estimate for the present-day values of the deceleration parameter, adiabatic speed of sound within the dark energy fluid, effective dark energy, and dark matter equation of state parameters is provided. By this, we mean that the interaction term between the two dark fluids, which breaks the Bianchi symmetries, will be interpreted as an effective contribution to the dark matter pressure similarly to the framework of the “Generalized Dark Matter”. We investigate whether the estimates of the Hubble constant and of the present-day abundance of dark matter are sensitive to the dark matter–dark energy coupling. We will also show that the cosmic chronometers data favor a cold dark matter, and that our findings are in agreement with the Le Châtelier–Braun principle according to which dark energy should decay into dark matter.