The environment of the global shipbuilding market is changing rapidly. Recently, the International Maritime Organization (IMO) has tightened regulations on sulfur oxide content standards for marine fuels and tightened sulfur oxide emission standards for the entire coastal region of China to consider the environment globally and use LNG as a fuel. There is a tendency for the number of vessels to operate to increase significantly. To use cryogenic LNG fuel, various pieces of equipment, such as storage tanks or valves, are required, and equipment using steel, which has excellent impact toughness in cryogenic environments, is required. Four steel types are specified in the IGG Code, and 9% Ni steel is mostly used for LNG fuel equipment. However, to secure safety at cryogenic temperatures, a systematic study investigating the causes of quality deterioration occurring in the 9% Ni steel welding process is required and a discrimination function capable of quality evaluation is urgent. Therefore, this study proposes a plan where the uniform quality of 9% Nickel steel is secured by reviewing the tendency of the solidification crack susceptibility among the quality problems of cryogenic steel to establish the criteria for quality deterioration and to develop a system capable of quality discrimination and defect avoidance.