Let Ω1 and Ω2 be bounded, connected open sets in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^N$\end{document} with continuous boundary, and let p > 2. We show that every positive linear isometry T from W1, p(Ω1) to W1, p(Ω2) that satisfies \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$W^{1,p}_0(\Omega _2) \subset TW^{1,p}_0(\Omega _1)$\end{document} corresponds to a rigid motion of the space, i.e., Tu = u○ξ for an isometry ξ of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {R}^N$\end{document}, and more precisely ξ(Ω2) = Ω1. We also prove similar results for less regular domains, and we obtain partial results also for p = 2.