Abstract. In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi's special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan's tau function τ (n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the η-function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2 − n that appear in Macdonald's work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac-Wakimoto conjectured identities involving representing a positive integer by sums of 4n 2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C ℓ nonterminating 6 φ 5 summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n 2 and n(n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas