Urban environments are regions of complex and diverse architecture. Their reconstruction and representation as three-dimensional city models have attracted the attention of many researchers and industry specialists, as they increasingly recognise the potential for new applications requiring detailed building models. Nevertheless, despite being investigated for a few decades, the comprehensive reconstruction of buildings remains a challenging task. While there is a considerable body of literature on this topic, including several systematic reviews summarising ways of acquiring and reconstructing coarse building structures, there is a paucity of in-depth research on the detection and reconstruction of façade openings (i.e., windows and doors). In this review, we provide an overview of emerging applications, data acquisition and processing techniques for building façade reconstruction, emphasising building opening detection. The use of traditional technologies from terrestrial and aerial platforms, along with emerging approaches, such as mobile phones and volunteered geography information, is discussed. The current status of approaches for opening detection is then examined in detail, separated into methods for three-dimensional and two-dimensional data. Based on the review, it is clear that a key limitation associated with façade reconstruction is process automation and the need for user intervention. Another limitation is the incompleteness of the data due to occlusion, which can be reduced by data fusion. In addition, the lack of available diverse benchmark datasets and further investigation into deep-learning methods for façade openings extraction present crucial opportunities for future research.