Place recognition technology endows a SLAM algorithm with the ability to eliminate accumulated errors and to relocalize itself. Existing methods on point cloud-based place recognition often leverage the matching of global descriptors which are lidar-centric. These methods have the following two major defects: place recognition cannot be performed when the distance between the two point clouds is far, and only the rotation angle can be calculated without the offset in the X and Y direction. To solve these two problems, we propose a novel global descriptor, which is built around the Main Object, in this way, descriptors are no longer dependent on the observation position. We analyze the theory that this method can perfectly solve the above two problems, and conduct a lot of experiments in KITTI and some extreme scenarios, which show that our method has obvious advantages over traditional methods.