Inducing
post-translational protein knockdown is an important approach
to probe biology and validate drug targets. An efficient strategy
to achieve this involves expression of a protein of interest fused
to an exogenous tag, allowing tag-directed chemical degraders to mediate
protein ubiquitylation and proteasomal degradation. Here, we combine
improved HaloPROTAC degrader probes with CRISPR/Cas9 genome editing
technology to trigger rapid degradation of endogenous target proteins.
Our optimized probe, HaloPROTAC-E, a chloroalkane conjugate of high-affinity
VHL binder VH298, induced reversible degradation of two endosomally
localized proteins, SGK3 and VPS34, with a DC50 of 3–10
nM. HaloPROTAC-E induced rapid (∼50% degradation after 30 min)
and complete (Dmax of ∼95% at 48
h) depletion of Halo-tagged SGK3, blocking downstream phosphorylation
of the SGK3 substrate NDRG1. HaloPROTAC-E more potently induced greater
steady state degradation of Halo tagged endogenous VPS34 than the
previously reported HaloPROTAC3 compound. Quantitative global proteomics
revealed that HaloPROTAC-E is remarkably selective inducing only degradation
of the Halo tagged endogenous VPS34 complex (VPS34, VPS15, Beclin1,
and ATG14) and no other proteins were significantly degraded. This
study exemplifies the combination of HaloPROTACs with CRISPR/Cas9
endogenous protein tagging as a useful method to induce rapid and
reversible degradation of endogenous proteins to interrogate their
function.