Plant growth characteristics after grafting are mainly dependent on photosynthesis performance, which may be influenced by grafting combinations with different rootstocks and scions. In this study, we used one-year-old walnut grafts to investigate the grafting compatibility between precocious (‘Liaoning 1’, L) and hybrid (‘Zhong Ning Sheng’, Z) walnut, as well as rootstock and scion impact on the growth and photosynthetic properties of walnut trees. The results showed that grafting compatibility between the two varieties is high, with survival rates upward of 86%. Overwintering survival of grafted seedlings was as high as 100%, which indicated that the allopolyploid had good resistance to low-temperature stress. The homograft of the hybrid walnut had the highest net photosynthesis rate (18.77 μmol·m−2s−1, Z/Z) and growth characteristics, which could be due to its higher transpiration rate and stomatal conductance, whereas the homograft of precocious walnut presented the lowest net photosynthesis rate (15.08 μmol·m−2s−1, L/L) and growth characteristics. Significant improvements in the net photosynthesis rate (15.97 and 15.24 μmol·m−2s−1 for L/Z and Z/L, respectively) and growth characteristics of precocious walnut were noticed during grafting of the hybrid walnut, which could have been contributed by their transpiration rate. The results of this study serve as a guide for the selection and breeding of good rootstock to improve plant growth characteristics and photosynthetic efficiency. We conclude that good rootstock selection improves plant growth potential and could play an important role in sustainable production.