[1] This paper compares seasonal and spatial variations of Moderate Resolution Imaging Spectroradiometer (MODIS) albedos with those from the Common Land Model (CLM) by land cover type. MODIS albedo data in the year 2001 were used to determine seasonal, spatial, and land cover dependence at 1 km resolution and to investigate the biases in CLM. Albedo dependence on vegetation type is smaller than that on snow and soil. Snow causes the largest temporal and spatial variations, especially in the visible band (0.3-0.7 mm). CLM has visible albedos that are lower by up to 0.4-0.5 in winter over northern high latitudes but are globally higher by 0.02-0.04 in summer over most vegetation, mainly due to its overestimated leaf and stem area index in winter and slightly higher prescribed canopy albedos in summer, respectively. MODIS and CLM differ considerably in soil albedo over desert and semidesert regions, especially in the near-infrared band (0.7-5.0 mm), with the largest low bias of about 0.1 in the Sahara. Adjustments of the prescribed albedos in CLM based on MODIS observations could reduce such biases. Therefore the model should better represent leaf and stem area index, vegetation albedo in the presence of snow, and soil albedo.
[1] This paper compares by land cover type seasonal and spatial variations of MODIS leaf area index (LAI) and fraction of photosynthetically active radiation (0.4-0.7 mm) absorbed by vegetation (FPAR) from 2.5 years with those from the Common Land Model (CLM) and investigates possible reasons for notable differences. The FPAR value is mainly determined by LAI in MODIS and both LAI and stem area index (SAI) in CLM. On average, the model underestimates FPAR in the Southern Hemisphere and overestimates FPAR over most areas in the Northern Hemisphere compared to MODIS observations during all seasons except northern middle latitude summer. Such overestimation is most significant in winter over northern high latitudes. The MODIS LAI is generally consistent with the model during the snow-free periods but may be underestimated in the presence of snow, especially for evergreen trees. The positive FPAR bias is mainly attributed to CLM SAI of deciduous canopy and higher LAI than MODIS for evergreen canopy as well. The negative FPAR bias results from several factors, including differences in LAI and soil albedo between CLM and MODIS or limitations of the geometric optics scheme used in the model. Therefore the MODIS algorithm needs to better represent the winter LAI retrievals, while the model needs to better quantify LAI and SAI. Since stems will not have the same single-scattering albedo as green leaves, it may be inappropriate for the model to treat LAI and SAI the same in the FPAR and albedo parameterizations. If so, the role of SAI in these parameterizations needs reformulation.
Abstract. Solar radiation is the primary driver of terrestrial plant photosynthesis and the diffuse component can enhance canopy light use efficiency (LUE), which in turn influences the carbon balance of terrestrial ecosystems. In this study we calculated the spatial data of diffuse radiation in China from 1981 to 2010, using a radiation decomposition model and spatial interpolation method based on observational data. Furthermore, we explored the spatiotemporal characteristics of diffuse radiation using GIS and trend analysis techniques. The results show the following: (1) The spatial patterns of perennial average of annual diffuse radiation during 1981–2010 are complex and inhomogeneous in China, generally lower in the north and higher in the south and west. The perennial average ranges from 1730.20 to 3064.41 MJ m−2 yr−1 across the whole country. (2) There is an increasing trend of annual diffuse radiation in China from 1981 to 2010 on the whole, with mean increasing amplitude of 7.03 MJ m−2 yr−1 per decade. Whereas a significant downtrend was observed in the first 10 years, distinct anomalies in 1982, 1983, 1991 and 1992 occurred due to the eruptions of El Chinchon and Pinatubo. (3) The spatial distribution of the temporal variability of diffuse radiation showed significant regional heterogeneity in addition to the seasonal differences. Northwestern China has the most evident downtrend, with highest decreasing rate of 6% per decade, while the Tibetan Plateau has the most evident uptrend, with highest increasing rate of up to 9% per decade. Such quantitative spatiotemporal characteristics of diffuse radiation are essential in regional scale modeling of terrestrial carbon dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.