2014
DOI: 10.1007/978-3-319-11854-3_61
|View full text |Cite
|
Sign up to set email alerts
|

Lean Data Science Research Life Cycle: A Concept for Data Analysis Software Development

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
22
0
9

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 27 publications
(31 citation statements)
references
References 8 publications
0
22
0
9
Order By: Relevance
“…The main drawbacks of the use of RMSE solely in calculating model performance are the scale dependency (if the model includes variables with different scales or magnitudes, then absolute error measures could not be applied), the high influence of outliers in data on the model performance evaluation, and the low reliability (the results could be different depending on the different fraction of data) [53]. For these reasons, Table 5 shows not only absolute model error statistical indicators, such as BIAS and RMSE, but also indicators based on percentage errors, such as NBIAS and NRMSE.…”
Section: Resultsmentioning
confidence: 99%
“…The main drawbacks of the use of RMSE solely in calculating model performance are the scale dependency (if the model includes variables with different scales or magnitudes, then absolute error measures could not be applied), the high influence of outliers in data on the model performance evaluation, and the low reliability (the results could be different depending on the different fraction of data) [53]. For these reasons, Table 5 shows not only absolute model error statistical indicators, such as BIAS and RMSE, but also indicators based on percentage errors, such as NBIAS and NRMSE.…”
Section: Resultsmentioning
confidence: 99%
“…Según Chai y Draxler (2014), el RMSE es la medida más popular del error, también conocida como «función de pérdida cuadrática». Sobre la misma medida de error Lakshmivarahan et al (2017) y Shcherbakov et al (2013) definen al RMSE como el promedio entre los valores absolutos de los errores del pronóstico, y se utiliza como un criterio de selección para el mejor ajuste de modelos de series de tiempo. Su forma de cálculo se lo hace a partir de la ecuación 4.…”
Section: Materials Y Métodosunclassified
“…As stated by Shcherbakov, et al [18], forecast error measurement can be used to estimate the quality of forecasting methods and to choose the best forecasting mechanism. There are many forecast error measurements, but we will use only two widely known scale-independent error measurements, i.e.…”
Section: Forecast Error Measurementmentioning
confidence: 99%