Abstract. Riming, i.e. the accretion and freezing of SLW on ice particles in mixed-phase clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar observations is of great interest, however, approaches based on measurements of the mean Doppler velocity (MDV) are unfeasible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be used to predict riming using ground-based zenith-pointing cloud radar variables as input features. ANNs are a versatile means to extract relations from labeled data sets, which contain input features along with the expected target values. Training data are extracted from a data set acquired during winter 2014 in Finland, containing both Ka-band cloud radar and in-situ observations of snowfall. We focus on two configurations of input variables: ANN #1 uses the equivalent radar reflectivity factor (Ze), MDV, the width from left to right edge of the spectrum above the noise floor (spectrum edge width; SEW), and the skewness as input features. ANN #2 only uses Ze, SEW and skewness. The application of these two ANN configurations to case studies from different data sets demonstrates that both are able to predict strong riming (riming index = 1) and yield low values (riming index ≤ 0.4) for unrimed snow. In general, the predictions of ANN #1 and ANN #2 are very similar, advocating the capability to predict riming without the use of MDV. It is demonstrated that both ANN setups are able to generalize to W-band radar data. The predictions of both ANNs for a wintertime convective cloud fit coinciding in-situ observations extremely well, suggesting the possibility to predict riming even within convective systems. Application of ANN #2 to an orographic case yields high riming index values coinciding with observations of solid graupel particles at the ground.