Abstract. Tomographic phase microscopy (TPM) is a unique imaging modality to measure the three-dimensional refractive index distribution of transparent and semitransparent samples. However, the requirement of the dense sampling in a large range of incident angles restricts its temporal resolution and prevents its application in dynamic scenes. Here, we propose a graphics processing unit-based implementation of a deep convolutional neural network to improve the performance of phase tomography, especially with much fewer incident angles. As a loss function for the regularized TPM, the l 1 -norm sparsity constraint is introduced for both datafidelity term and gradient-domain regularizer in the multislice beam propagation model. We compare our method with several state-of-the-art algorithms and obtain at least 14 dB improvement in signal-to-noise ratio. Experimental results on HeLa cells are also shown with different levels of data reduction. © The Authors.Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.