We demonstrate for the first time to our knowledge a digital phase conjugation technique for generating a sharp focus point at the end of a multimode optical fiber. A sharp focus with a contrast of 1800 is experimentally obtained at the tip of a 105 μm core multimode fiber. Scanning of the focal point is also demonstrated by digital means. Effects from illumination and fiber bending are addressed.
The optical memory effect is a well-known type of wave correlation that is observed in coherent fields that scatter through thin and diffusive materials, like biological tissue. It is a fundamental physical property of scattering media that can be harnessed for deep-tissue microscopy or 'throughthe-wall' imaging applications. Here we show that the optical memory effect is a special case of a far more general class of wave correlation. Our new theoretical framework explains how waves remain correlated over both space and angle when they are jointly shifted and tilted inside scattering media of arbitrary geometry. We experimentally demonstrate the existence of such coupled correlations and describe how they can be used to optimize the scanning range in adaptive optics microscopes.
Optical tomography has been widely investigated for biomedical imaging applications. In recent years optical tomography has been combined with digital holography and has been employed to produce high-quality images of phase objects such as cells. In this paper we describe a method for imaging 3D phase objects in a tomographic configuration implemented by training an artificial neural network to reproduce the complex amplitude of the experimentally measured scattered light. The network is designed such that the voxel values of the refractive index of the 3D object are the variables that are adapted during the training process. We demonstrate the method experimentally by forming images of the 3D refractive index distribution of Hela cells.
Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. However, finding the right wavefront to shape is a challenge when the mapping between input and output scattered wavefronts (i.e. the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory-effect, have been exploited to address this limitation. However, the traditional memory-effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.