2017
DOI: 10.18547/gcb.2017.vol3.iss2.e43
|View full text |Cite
|
Sign up to set email alerts
|

Learning Delays in Biological Regulatory Networks from Time Series Data

Abstract: Models of Biological Regulatory Networks are generally based on prior knowledge, either derived from literature and/or the manual analysis of biological observations. With the development of high-throughput data, there is a growing need for methods that automatically generate admissible models. To have a better understanding of the dynamical phenomena at stake in the influences between biological components, it would be necessary to include delayed influences in the model.The main purpose of this work is to ha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?