In search engines, different users may search for different information by issuing the same query. To satisfy more users with limited search results, search result diversification re-ranks the results to cover as many user intents as possible. Most existing intent-aware diversification algorithms recognize user intents as subtopics, each of which is usually a word, a phrase, or a piece of description. In this paper, we leverage query facets to understand user intents in diversification, where each facet contains a group of words or phrases that explain an underlying intent of a query. We generate subtopics based on query facets and propose faceted diversification approaches. Experimental results on the public TREC 2009 dataset show that our faceted approaches outperform state-of-the-art diversification models.