2014
DOI: 10.1016/j.patcog.2013.07.016
|View full text |Cite
|
Sign up to set email alerts
|

Learning group-based dictionaries for discriminative image representation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 22 publications
(11 citation statements)
references
References 53 publications
0
9
0
2
Order By: Relevance
“…在分层分类中, 许多学者利用 ontology 知识进行分类学习, 如图像分类的 WordNet 语义结构 [24,25] 和网页分类的分层结构 [26,27] [32] 利用了近邻传播进行分层结构的聚类, 2014 年, Lei 等 [33] 采用了谱聚类构建层次结构. 2015 年, Fan 等 [34] 利用类样本的均值作为代表点度量类 别之间的相似关系来建立层次结构, 虽然实现了快速的层次构建方法, 但是却丢失了较多的信息.…”
Section: 层次结构的构建unclassified
See 1 more Smart Citation
“…在分层分类中, 许多学者利用 ontology 知识进行分类学习, 如图像分类的 WordNet 语义结构 [24,25] 和网页分类的分层结构 [26,27] [32] 利用了近邻传播进行分层结构的聚类, 2014 年, Lei 等 [33] 采用了谱聚类构建层次结构. 2015 年, Fan 等 [34] 利用类样本的均值作为代表点度量类 别之间的相似关系来建立层次结构, 虽然实现了快速的层次构建方法, 但是却丢失了较多的信息.…”
Section: 层次结构的构建unclassified
“…Griffin 等 [28] 、Feng 等 [50] 、Wen 等 [51] 、Bengio 等 [29] 、Gao 等 [18] 和 Lei 等 [33] 学者的工作. 这种自顶 为了解决上述问题, 一些学者通过最小化全局损失函数的方式对层次结构中的多个分类器进行 联合优化 [55∼59] .…”
Section: 给定层次结构之后 分类器的学习可以通过引入层次结构信息提高性能 通常来说 叶子节点对 应着所有的样本标签 因此常unclassified
“…However, hierarchical learning methods based on confusion matrices suffer from two main limitations: 1) computation of the confusion matrix using a one-vs.-all SVM is time consuming; and 2) the confusion matrix may not be reliable due to unbalanced training data. Visual trees constructed by clustering produce an intuitive hierarchical structure [12], [29], [40], [62] and have attracted more and more attention. Zhou et al [62] utilized AP clustering and Lei et al [29] implemented spectral clustering to construct visual trees.…”
Section: A Hierarchical Learningmentioning
confidence: 99%
“…Performing hierarchical inference based on the visual hierarchical structure is also challenging. Greedy learning is a typical way to solve classification prediction using visual tree models [6], [29], [62]. However, while relatively intuitive, the greedy approach does not prevent error propagation; that is, if a mistake is made in an intermediate node, the prediction result is then destined to be wrong.…”
Section: Introductionmentioning
confidence: 99%
“…The BOVW is used to represent local features and descriptors, along with geometry verification, which is motivated by an analogy, with the 'bag-of-words' representation for text categorization. There are publications [4]- [7] about visual content representation using the BOVW due to it being a promising method for visual content classification, annotation, and retrieval. The BOVW model of images may be classified in a class on the basis of visual word histograms.…”
Section: Introductionmentioning
confidence: 99%