Black phosphorus (BP) nanomaterials have emerged as rapidly rising stars in the field of nanomedicine. In this work, BP quantum dots (BPQDs) are synthesized and their potential as photosensitizers is investigated for the first time. The BPQDs present good stability in physiological medium and no appreciable cytotoxicity. More importantly, the BPQDs can be rapidly eliminated from the body in their intact form via renal clearance due to their ultrasmall hydrodynamic diameter (5.4 nm). Both in vitro and in vivo studies indicate that the BPQDs have excellent photodynamic effect under light irradiation that can effectively generate reactive oxygen species to kill cancer cells. The BPQDs thus can serve as biocompatible and powerful photosensitizers for efficient photodynamic therapy.
The outbreak of COVID-19 has spread across the world and was characterized as a pandemic. To protect medical laboratory personnel from infection, most laboratories inactivate the clinical samples before testing. However, the effect of inactivation on the detection results remains unknown. Here, we used a digital PCR assay to determine the absolute SARS-CoV-2 RNA copy number in 63 nasopharyngeal samples and assess the effect of inactivation methods on viral RNA copy number. Viral inactivation was performed with three different methods: (1) incubation with TRIzol® LS Reagent for 10 min at room temperature, (2) heating in a waterbath at 56°C for 30 min, and (3) high-temperature treatment, including 121°C autoclaving for 20 min, 100°C boiling for 20 min, and 80°C heating for 20 min. Compared to the amount of RNA in the original sample, TRIzol treatment destroyed 47.54% of N gene and 39.85% of ORF 1ab. For samples treated at 56°C for 30 min, the copy number of N gene and ORF 1ab was reduced by 48.55% and 56.40%, respectively. Viral RNA copy number dropped by 50–66% after 80°C heating for 20 min. Nearly no viral RNA was detected after autoclaving at 121°C or boiling at 100°C for 20 min. These results indicated that inactivation reduced the quantity of detectable viral RNA and may cause false negative results especially in weakly positive cases. Thus, TRIzol is recommended for sample inactivation in comparison to heat inactivation as Trizol has the least effect on RNA copy number among the tested methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.