DOI: 10.1007/978-3-540-74549-5_87
|View full text |Cite
|
Sign up to set email alerts
|

Learning Multi-scale Block Local Binary Patterns for Face Recognition

Abstract: Abstract. In this paper, we propose a novel representation, called Multiscale Block Local Binary Pattern (MB-LBP), and apply it to face recognition. The Local Binary Pattern (LBP) has been proved to be effective for image representation, but it is too local to be robust. In MB-LBP, the computation is done based on average values of block subregions, instead of individual pixels. In this way, MB-LBP code presents several advantages: (1) It is more robust than LBP; (2) it encodes not only microstructures but als… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
268
0
4

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 462 publications
(273 citation statements)
references
References 19 publications
1
268
0
4
Order By: Relevance
“…Pengembangan ini dikhususkan untuk meningkatkan kemampuan membedakan [29][30], meningkatkan ketahanan terhadap perubahan (robustness) [31][32], pengembangan dalam penelitian pemilihan neighbourhood [33][34], pengembangkan dalam ranah dimensi tiga [35][36], pengembangan dalam kombinasi penggunaan dengan metode lain [37][38].…”
Section: Issn 2085-4811unclassified
“…Pengembangan ini dikhususkan untuk meningkatkan kemampuan membedakan [29][30], meningkatkan ketahanan terhadap perubahan (robustness) [31][32], pengembangan dalam penelitian pemilihan neighbourhood [33][34], pengembangkan dalam ranah dimensi tiga [35][36], pengembangan dalam kombinasi penggunaan dengan metode lain [37][38].…”
Section: Issn 2085-4811unclassified
“…4. Choose the correct match from the trained pattern spectrum database for which the given testing pattern HMM and GMM Face recognition through Modelbased methods [5] Multiscale Block LBP Face Recognition using Texture model [9] Combined approach of LBP and geometrical features Face recognition through the combined approach of texture with geometry features [11] Fusion of shape and texture features…”
Section: Testing Phasementioning
confidence: 99%
“…The proposed approach is partially inspired by Multiscale Block Local Binary Pattern (MBLBP) [25], in which authors propose to compare average intensities of neighbouring blocks of pixels in order to create a binary string. In MBLBP, three patches with 3×3, 9×9, and 15×15 pixels are divided into nine blocks (cells).…”
Section: Optimisation Problemmentioning
confidence: 99%