In recent years, Automatic Speech Recognition (ASR) technology has approached human-level performance on conversational speech under relatively clean listening conditions. In more demanding situations involving distant microphones, overlapped speech, background noise, or natural dialogue structures, the ASR error rate is at least an order of magnitude higher. The visual modality of speech carries the potential to partially overcome these challenges and contribute to the sub-tasks of speaker diarisation, voice activity detection, and the recovery of the place of articulation, and can compensate for up to 15dB of noise on average. This article develops AV Taris, a fully differentiable neural network model capable of decoding audio-visual speech in real time. We achieve this by connecting two recently proposed models for audio-visual speech integration and online speech recognition, namely AV Align and Taris. We evaluate AV Taris under the same conditions as AV Align and Taris on one of the largest publicly available audio-visual speech datasets, LRS2. Our results show that AV Taris is superior to the audio-only variant of Taris, demonstrating the utility of the visual modality to speech recognition within the real time decoding framework defined by Taris. Compared to an equivalent Transformer-based AV Align model that takes advantage of full sentences without meeting the real-time requirement, we report an absolute degradation of approximately 3% with AV Taris. As opposed to the more popular alternative for online speech recognition, namely the RNN Transducer, Taris offers a greatly simplified fully differentiable training pipeline. As a consequence, AV Taris has the potential to popularise the adoption of Audio-Visual Speech Recognition (AVSR) technology and overcome the inherent limitations of the audio modality in less optimal listening conditions. Our code is publicly available at https://github.com/georgesterpu/Taris.