1994
DOI: 10.1137/0731071
|View full text |Cite
|
Sign up to set email alerts
|

Least-Squares Mixed Finite Elements for Second-Order Elliptic Problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
106
0
3

Year Published

1997
1997
2016
2016

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 166 publications
(110 citation statements)
references
References 13 publications
1
106
0
3
Order By: Relevance
“…Resultados teóricos similares foram apresentados em [3] e [11] e posteriormente generalizados para problemas de advecção-difusão-reação em [2] a partir de resultados preliminares obtidos por Girault-Raviart [6]. Resultados numéricos comprovam as taxas de convergência obtidas nessas análises.…”
Section: Leal-toledo Toledo E Vasconcelosunclassified
See 2 more Smart Citations
“…Resultados teóricos similares foram apresentados em [3] e [11] e posteriormente generalizados para problemas de advecção-difusão-reação em [2] a partir de resultados preliminares obtidos por Girault-Raviart [6]. Resultados numéricos comprovam as taxas de convergência obtidas nessas análises.…”
Section: Leal-toledo Toledo E Vasconcelosunclassified
“…Resultados semelhantes podem ser encontrados em [11] quando ké uma matriz diagonal com coeficientes variáveis.…”
Section: Leal-toledo Toledo E Vasconcelosunclassified
See 1 more Smart Citation
“…In addition, excepting in one special case, such methods produce suboptimally accurate (with respect to L 2 (Ω) norms) flux approximations. 14 Already in [38], optimal L 2 error estimates for LSFEMs were established for the scalar variable; however, there and in all subsequent analyses, optimal L 2 error estimates for the flux could not be obtained 15 without the addition of a "redundant" curl equation; see, e.g., [23,24,26,39,44]. Moreover, computational studies in [32] strongly suggested that optimal L 2 convergence for flux approximations may in fact be nearly impossible to obtain if one uses pairs of standard, nodalbased, continuous finite element spaces.…”
Section: Compatible Lsfemsmentioning
confidence: 99%
“…For the existence, uniqueness, and regularity of the solutions of the Sobolev equation (1.1), we refer to [3,4,20]. For Sobolev equations without a convection term, many mathematicians achieve the numerical results by classical finite element methods [1,6,10,11,12] or least-squares methods [9,15,16,21,22] or mixed finite element methods [8] or discontinuous finite element methods [13,14,18,19]. But in many situations, the convection term d (x ) · ∇u exists and d (x ) is large in order to describe a convection dominated diffusion.…”
Section: Introductionmentioning
confidence: 99%