2021
DOI: 10.48550/arxiv.2103.15699
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Lebesgue type decompositions and Radon-Nikodym derivatives for pairs of bounded linear operators

Abstract: For a pair of bounded linear Hilbert space operators A and B one considers the Lebesgue type decompositions of B with respect to A into an almost dominated part and a singular part, analogous to the Lebesgue decomposition for a pair of measures (in which case one speaks of an absolutely continuous and a singular part). A complete parametrization of all Lebesgue type decompositions will be given, and the uniqueness of such decompositions will be characterized. In addition, it will be shown that the almost domin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?