Bad weather, mechanical failures, air control, and crew members of the discomfort health are very likely to cause flight delays. If these events occur, decision-makers of airport operation must rediscover the flight schedules through reassigning gates to these flights, delaying flights, and canceling flights. Therefore, it is important to study the recovery strategy with the feasibility and the least cost for delayed flights and to improve the airport operation efficiency. In this paper, a mathematical model of gate reassignment based on the objectives of the loss of passengers, airport operating, and airlines, and the most important index of disturbance value of the gate reassignment for delayed flights is constructed. Then, the genetic algorithm (GA) and ant colony optimization (ACO) algorithm are combined in order to propose a two-stage hybrid(GAOTWSH) algorithm, which is used to solve the constructed mathematical model of gate reassignment for delayed flights. The test data from the operations of the one airport is used to simulate and demonstrate the performance of the constructed mathematical model of gate reassignment for irregular flights. The results show that the proposed GAOTWSH algorithm has better optimization performance and the constructed gate reassignment model is feasible and effective. The study provides a new idea and method for irregular flights.