Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
For the current stellar spectral simulation can not realize the stellar color temperature information with large dynamic range simulation, this paper proposes a broad spectrum high-resolution subdivision and spatial beam zoning modulation combined with a large dynamic range of stellar radiation information simulation method, designed a kind of imaging and non-imaging stellar radiation information simulation optical system, using an optical system to achieve multi-color temperature spectrum and large dynamic range stellar simulation. The experimental results show that the designed system can simultaneously achieve the spectral simulation accuracy (single point evaluation) better than ± 7% in the range of spectral 450–1000 nm and color temperature 3000–11,000 K; on the premise of ensuring the spectral simulation accuracy, the magnitude simulation range reaches 0 to + 12 Mv, and the magnitude simulation accuracy is better than ± 0.05 Mv; Accurate simulation of stellar spectral information and energy large dynamic range tuning is realized, and the system is extended. The system function has been extended to realize the switching of broadband and narrowband modes, The half-peak width of the narrowband output beam is better than 4.1 nm, which extends the application of the spectral simulation technology and provides the theoretical and technical basis for the ground calibration of the development of the high-precision stellar radiation information ground simulation system.
For the current stellar spectral simulation can not realize the stellar color temperature information with large dynamic range simulation, this paper proposes a broad spectrum high-resolution subdivision and spatial beam zoning modulation combined with a large dynamic range of stellar radiation information simulation method, designed a kind of imaging and non-imaging stellar radiation information simulation optical system, using an optical system to achieve multi-color temperature spectrum and large dynamic range stellar simulation. The experimental results show that the designed system can simultaneously achieve the spectral simulation accuracy (single point evaluation) better than ± 7% in the range of spectral 450–1000 nm and color temperature 3000–11,000 K; on the premise of ensuring the spectral simulation accuracy, the magnitude simulation range reaches 0 to + 12 Mv, and the magnitude simulation accuracy is better than ± 0.05 Mv; Accurate simulation of stellar spectral information and energy large dynamic range tuning is realized, and the system is extended. The system function has been extended to realize the switching of broadband and narrowband modes, The half-peak width of the narrowband output beam is better than 4.1 nm, which extends the application of the spectral simulation technology and provides the theoretical and technical basis for the ground calibration of the development of the high-precision stellar radiation information ground simulation system.
This study investigated the multiple correlations among spectral simulation units based on digital micromirror device (DMD) spectral simulation, which leads to the problem that conventional spectral simulation methods such as PID control exhibit a low fitting accuracy or long fitting time in the spectral simulation of various targets. In this paper, a method of stellar spectrum simulation based on back propagation neural network-based PID (BP-PID) control is proposed to achieve high efficiency and high precision simulation of various spectral targets. The topology of the BP neural network was constructed based on the spectral modulation model of a DMD stellar spectrum simulation system, and the algorithm of the BP-PID control was designed. Finally, an experimental platform was built to verify the performance and spectral simulation accuracy of the BP-PID control algorithm. The results show that the overshoot and response time of the BP-PID control algorithm decreased by 79.01% and 30%, respectively compared with those of the PID control algorithm. The maximum spectral simulation accuracies of 2000K, 7000K, and 12000K color temperature increased by a factor of 2.311, 1.871, and 2.254, respectively, and the standard deviations of the spectral simulation error decreased by 56%, 41%, and 54%, respectively. In the range of 2000-12000K color temperature, the spectral simulation error of the BP-PID control algorithm is better than ±3.495%, and the standard deviation of the spectral simulation error is between 1.8255 and 2.2358. The proposed method can improve the spectral simulation accuracy and simulation efficiency of a star simulator, reduce the magnitude and spectrum calibration errors caused by the differential response, improve the star feature recognition accuracy of the orbiting star sensor, and hence, provide a theoretical and technical basis for the development of high-precision star sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.