Summary
Aqueous zinc batteries (AZBs) hold great promise for advancing applications in next‐generation energy storage devices because of their high safety, high energy density, and low cost. However, zinc metal anodes have greatly impeded the application in AZBs due to their poor cycle performance. Short lifespan, which is caused by dendritic growth, deformation, corrosion, and competing hydrogen evolution, is very tricky. Herein, a stable Sn@Cu foam, prepared by plating tin on copper foam, is reported as the substrate of Zn anodes. We evaluate the quality of plating tin layers, which are prepared by using different tin salt solutions, and Na2SnO3 solution is eventually selected. Electrochemical tests show that Sn@Cu foam can not only inherit the merits of Cu foam but also suppress hydrogen evolution reaction and lower the initial heterogeneous nucleation barrier of deposited Zn. Moreover, in situ observation by optical microscope demonstrates that Zn dendrite growth on Sn layer is suppressed during the plating‐stripping process. As a result, a compact Zn layer on Sn@Cu foam is obtained (Zn/Sn@Cu foam), symmetrical cells display superior cycling life of 1800 h at 1 mA cm−2 for 1 mAh cm−2, and full cells with VO2 cathode deliver remarkably better cycling stability and longer lifespan.