Up to date, medical robots for minimal invasive surgery do not provide assistance appropriate to the workflow of the intervention. A simple concept of a cognitive system is presented, which is derived from a classic closed-loop control. As implementation, we present a cognitive medical robot system using lightweight robots with redundant kinematics. The robot system includes several control modes and human-machine interfaces. We focus on describing knowledge acquisition about the workflow of an intervention and present two example applications utilizing the acquired knowledge: autonomous camera guidance and planning of minimal invasive port (trocar) positions in combination with an initial robot setup. Port planning is described as optimization problem. The autonomous camera system includes a mid-term movement prediction of the ongoing intervention. The cognitive approach to a medical robot system includes taking the environment into account. The goal is to create a system that acts as a human assistant, who perceives the situation, understands the context based on his knowledge and acts appropriate.