Monosodium glutamate (MSG) treatment of neonatal rodents leads to degeneration of the neurons in the arcuate nucleus, inner retinal layers and various other brain areas. It also causes various changes in the motor activity, sensory performance and learning abilities. We have previously shown that MSG treatment delays the appearance of some reflexes during neurobehavioral development and leads to temporary changes in reflex performance and motor coordination. Investigation of novelty-seeking behavior is of growing importance for its relationship with sensitivity to psychomotor stimulants. Perinatal administration of numerous toxic agents has been shown to influence novelty-seeking behavior in rats, but little is known about the influence of neonatal MSG treatment on the novelty-seeking behavior. The aim of the present study was to compare changes in locomotor, spontaneous exploratory and novelty-seeking behavior in periadolescent rats neonatally treated with MSG. Newborn rats were treated with 4 mg/g MSG subcutaneously on postnatal days 1, 3, 5, 7 and 9. Open-field behavior was tested at 2, 3, 4, 6 and 8 weeks of age. We found that MSG administration led to only temporary increases in locomotor behavior, which was more pronounced during the first few postnatal weeks, followed by a subtle hypoactivity at 2 months of age. Novelty-seeking was tested in four 5-min trials at 3 weeks of age. Trial 1 was in an empty open-field, two identical objects were placed in the arena during trial 2 and 3, and one of them was replaced to a novel object during trial 4. We found that the behavioral pattern of MSG-treated rats was the opposite in all tested signs in the novelty exploration test compared to control pups. In summary, our present study shows that neonatal MSG treatment leads to early temporary changes in the locomotor activity followed by hypoactivity at 2 months of age. Furthermore, MSG-treated rats show a markedly disturbed novelty-seeking behavior represented by altered activity when subjected to a novel object.