The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Gantz, Ira, and Tung M. Fong. The melanocortin system. Am J Physiol Endocrinol Metab 284: E468-E474, 2003; 10.1152/ajpendo. 00434.2002.-The melanocortin system consists of melanocortin peptides derived from the proopiomelanocortin gene, five melanocortin receptors, two endogenous antagonists, and two ancillary proteins. This review provides an abbreviated account of the basic biochemistry, pharmacology, and physiology of the melanocortin system and highlights progress made in four areas. In particular, recent pharmacological and genetic studies have affirmed the role of melanocortins in pigmentation, inflammation, energy homeostasis, and sexual function. Development of selective agonists and antagonists is expected to further facilitate the investigation of these complex physiological functions and provide an experimental basis for new pharmacotherapies.inflammation; obesity; pigmentation; sexual function; receptor THE MELANOCORTIN SYSTEM consists of 1) the melanocortin peptides ␣-, -, and ␥-melanocyte-stimulating hormone (␣-, -, ␥-MSH) and adrenocorticotropic hormone (ACTH), 2) a family of five seven-transmembrane G protein-coupled melanocortin receptors, and 3) the endogenous melanocortin antagonists agouti and agoutirelated protein (AGRP). In addition, two ancillary proteins, mahogany and syndecan-3, have been found that modulate the activity of the melanocortin peptides (melanocortins). This minireview is meant to introduce the melanocortin system to the unacquainted reader.The melanocortins are involved in an extraordinarily diverse number of physiological functions, including pigmentation, steroidogenesis, energy homeostasis, exocrine secretion, sexual function, analgesia, inflammation, immunomodulation, temperature control, cardiovascular regulation, and neuromuscular regeneration. On the basis of their prominent regulatory role in many of these functions, the development of melanocortin-based drugs is currently being considered, or is presently in the developmental phase, for the treatment of skin cancer and other cutaneous disorders, obesity, anorexia nervosa and cachexia, erectile dysfunction, inflammatory diseases, pain, and nerve injury. The physiological basis for considering melanocortins as central participants in some of the aforementioned processes will be discussed.The first portion of this minireview will present, largely in isolation, the various elements of the melanocortin system. These elements will then be discussed in the context of four physiological functions: pigmentation, inflammation, energy homeostasis, and sexual behavior. With the use of this approach, however, there is an inevitable overlap of organization. COMPONENTS OF THE MELANOCORTIN SYSTEM Proopiomelanocortin ProhormoneThe melanocortins are posttranslational products of the proopiomelanocortin (POMC) prohormone. This prohormone also gives rise to the opiate peptide -endorphin, hence the name pro-opio-melanocortin. Among the peptide products of that prohormone, the melanocortins are unified by the fact they contain the a...
To elucidate the molecular basis for the interaction of ligands with the human melanocortin-4 receptor (hMC4R), agonist structure-activity studies and receptor point mutagenesis were performed. Structure-activity studies of [Nle(4), D-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) identified D-Phe7-Arg8-Trp9 as the minimal NDP-MSH fragment that possesses full agonist efficacy at the hMC4R. In an effort to identify receptor residues that might interact with amino acids in this tripeptide sequence 24 hMC4R transmembrane (TM) residues were mutated (the rationale for choosing specific receptor residues for mutation is outlined in the Results section). Mutation of TM3 residues D122 and D126 and TM6 residues F261 and H264 decreased the binding affinity of NDP-MSH 5-fold or greater, thereby identifying these receptor residues as sites potentially involved in the sought after ligand-receptor interactions. By examination of the binding affinities and potencies of substituted NDP-MSH peptides at receptor mutants, evidence was found that core melanocortin peptide residue Arg8 interacts at a molecular level with hMC4R TM3 residue D122. TM3 mutations were also observed to decrease the binding of hMC4R antagonists. Notably, mutation of TM3 residue D126 to alanine decreased the binding affinity of AGRP (87-132), a C-terminal derivative of the endogenous melanocortin antagonist, 8-fold, and simultaneous mutations D122A/D126A completely abolished AGRP (87-132) binding. In addition, mutation of TM3 residue D122 or D126 decreased the binding affinity of hMC4R antagonist SHU 9119. These results provide further insight into the molecular determinants of hMC4R ligand binding.
[(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [(18)F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [(18)F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [(18)F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [(18)F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.