Leptin administration reduces obesity in leptin-deficient ob/ob mice; its effects in obese humans, who have high circulating leptin levels, remain to be determined. This longitudinal study was designed to determine whether diet-induced obesity in mice produces resistance to peripheral and/or central leptin treatment. Obesity was induced in two strains of mice by exposure to a 45% fat diet. Serum leptin increased in proportion to body weight ( P Ͻ 0.00001). Whereas C57BL/6 mice initially responded to peripherally administered leptin with a marked decrease in food intake, leptin resistance developed after 16 d on high fat diet; mice on 10% fat diet retained leptin sensitivity. In AKR mice, peripheral leptin significantly decreased food intake in both 10 and 45% fat-fed mice after 16 d of dietary treatment. However, after 56 d, both groups became resistant to peripherally administered leptin. Central administration of leptin to peripherally leptin-resistant AKR mice on 45% fat diet resulted in a robust response to leptin, with a dose-dependent decrease in food intake ( P Ͻ 0.00001) and body weight ( P Ͻ 0.0001) after a single intracerebroventricular infusion. These data demonstrate that, in a diet-induced obesity model, mice exhibit resistance to peripherally administered leptin, while retaining sensitivity to centrally administered leptin. ( J. Clin. Invest. 1997. 99:385-390.) Key words: leptin resistance • high fat diet • food intake • C57BL/6 • AKR
The adenylate cyclase system, which consists of a catalytic moiety and regulatory guanine nucleotide-binding proteins, provides the effector mechanism for the intracellular actions of many hormones and drugs. The tissue specificity of the system is determined by the particular receptors that a cell expresses. Of the many receptors known to modulate adenylate cyclase activity, the best characterized and one of the most pharmacologically important is the beta-adrenergic receptor (beta AR). The pharmacologically distinguishable subtypes of the beta-adrenergic receptor, beta 1 and beta 2 receptors, stimulate adenylate cyclase on binding specific catecholamines. Recently, the avian erythrocyte beta 1, the amphibian erythrocyte beta 2 and the mammalian lung beta 2 receptors have been purified to homogeneity and demonstrated to retain binding activity in detergent-solubilized form. Moreover, the beta-adrenergic receptor has been reconstituted with the other components of the adenylate cyclase system in vitro, thus making this hormone receptor particularly attractive for studies of the mechanism of receptor action. This situation is in contrast to that for the receptors for growth factors and insulin, where the primary biochemical effectors of receptor action are unknown. Here, we report the cloning of the gene and cDNA for the mammalian beta 2AR. Analysis of the amino-acid sequence predicted for the beta AR indicates significant amino-acid homology with bovine rhodopsin and suggests that, like rhodopsin, beta AR possesses multiple membrane-spanning regions.
The acetylcholine receptor from the electric ray Torpedo californica is composed of five subunits; two are identical and the other three are structurally related to them. Microsequence analysis of the four polypeptides demonstrates amino acid homology among the subunits. Further sequence analysis of both membrane-bound and Triton-solubilized, chromatographically purified receptor gave the stoichiometry of the four subunits (40,000:50,000:60,000:65,000 daltons) as 2:1:1:1, indicating that this protein is a pentameric complex with a molecular weight of 255,000 daltons. Genealogical analysis suggests that divergence from a common ancestral gene occurred early in the evolution of the receptor. This shared ancestry argues that each of the four subunits plays a functional role in the receptor's physiological action.
The family of G-protein-coupled receptors can be defined by their similar structural and functional characteristics. Although their primary sequences are quite diverse, these proteins share several common structural features that reflect their common mechanism of action. Mutagenesis and biophysical analysis of several of these receptors indicate that small molecule agonists and antagonists bind to a hydrophobic pocket buried in the transmembrane core of the receptor. In contrast, peptide ligands bind to both the extracellular and transmembrane domains. The mechanisms by which these peptide and small molecule agonists cause receptor activation are being explored by various approaches, but are not yet well defined. A deeper understanding of structural basis for the functional activity of this large family of receptors will have important implications for drug design in a variety of therapeutic areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.