Mutagenic drugs are promising candidates for the treatment of various RNA virus infections. Increasing the mutation rate of the virus leads to rapid accumulation of deleterious mutation load, which is proposed to ultimately result in extinction as described by the theoretical concepts of mutational meltdown and lethal mutagenesis. However, the conditions and potential mechanisms of viral escape from the effects of mutagenic drugs have not been conceptually explored. Here we apply a computational approach to quantify the population dynamics and genetics of a population under high mutation rates and discuss the likelihood of adaptation to a mutagenic drug by means of three proposed mechanisms: (1) a proportion of "traditional" beneficial mutations that increase growth/fitness, (2) a mutation rate modifier (i.e., evolution of resistance to the mutagenic drug) that reduces the mutation rate, and (3) a modifier of the distribution of fitness effects, which either decreases or increases deleterious effects of mutations (i.e., evolution of tolerance to the mutagenic drug). We track the population dynamics and genetics of evolving populations and find that successful adaptations have to appear early to override the increasing mutational load and rescue the population from its imminent extinction. We highlight that the observed stochasticity of adaptation, especially by means of modifiers of the distribution of fitness effects, is difficult to capture in experimental trials, which may leave potential dangers of the use of mutagenic treatments unexposed.