Aminopeptidase A is a zinc metalloenzyme involved in the formation of brain angiotensin III, which exerts a tonic stimulatory action on the central control of blood pressure. Thus, central inhibitors of aminopeptidase A constitute putative central antihypertensive agents. Mutagenic studies have been performed to investigate organization of the aminopeptidase A active site, with a view to designing such inhibitors. The structure of one monozinc aminopeptidase (leukotriene A 4 hydrolase) was recently resolved and used to construct a threedimensional model of the aminopeptidase A ectodomain. This new model, highly consistent with the results of mutagenic studies, showed a critical structural interaction between two conserved residues, Arg-220 and Asp-227. Mutagenic replacement of either of these two residues disrupted maturation and subcellular localization and abolished the enzymatic activity of aminopeptidase A, confirming the critical structural role of these residues. In this study, we generated the first threedimensional model of a strict aminopeptidase, aminopeptidase A. This model constitutes a new tool to probe further the active site of aminopeptidase A and to design new inhibitors of this enzyme.