1977
DOI: 10.1007/bf01919766
|View full text |Cite
|
Sign up to set email alerts
|

Lexicographic quasiconcave multiobjective programming

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
1

Year Published

1979
1979
2009
2009

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 22 publications
(15 citation statements)
references
References 16 publications
0
12
0
1
Order By: Relevance
“…Thus h is a solution for (1). Now, let h be a solution for (1). Then h :# 0 and x* + Xh E S for all x* E S and all X > 0.…”
Section: Lemma 1 Let S 4= ~ Z(x) Is Not Lexicographieally Bounded Fmentioning
confidence: 97%
See 2 more Smart Citations
“…Thus h is a solution for (1). Now, let h be a solution for (1). Then h :# 0 and x* + Xh E S for all x* E S and all X > 0.…”
Section: Lemma 1 Let S 4= ~ Z(x) Is Not Lexicographieally Bounded Fmentioning
confidence: 97%
“…all ~ E S with Cx' ~ C~ for no x' E S. Note that for k = 1 (LLP) reduces to an ordinary linear program. Several mathematical and game-theoretic applications of nonlinear lexicographic optimization are reported in [1 ]. Moreover this contribution establishes a procedure how a lexicographic optimization problem can be reduced to a family of k one-objective programming problems.…”
Section: Zk(x))mentioning
confidence: 98%
See 1 more Smart Citation
“…1 K o r o l l a r z u S a t z 4.5 (stark halbstetig glelch .5-halhstetlg) Linter den. Yoraussetzungen von Satz 4.5 gilt: f stark halbstetig nnch oben (unten)]+[f A -halbstetig nach oben [ ( u n t e n ) ] o [ f <-halbstetig nnch oben (unten)].Analog zu dem Vorgehen von PIRZL[15] wollen wir nun noch auf die Umkehrung des Maximalelementsatzes in Korollar I und 2 zu Satz 3.2 eingehen.F e s t s t el l u n g 4.4 (Ordnungskompaktheit bei Existenz eines maximalen Elementes) : Hat die Quasiordnung ( Y ,5 ) ein 5 -maximaies Eiement, dann ist Y in der <-Obertopologie und damit in jeder zu dieser groberen Topologie kompakt. PIRZL[15] bewies diese Aussage fur (Y, 5 ) Halbordnung.…”
unclassified
“…A lexicographic approach is one such technique that can guarantee Pareto-optimality of multiobjective optimization problems. Several mathematical nonlinear lexicographic optimizations have been reported by Behringer (1977). This type of optimization is studied by arranging objective functions in lexicographic order i.e.…”
Section: Multi-objective Optimizationmentioning
confidence: 99%