“…Thus h is a solution for (1). Now, let h be a solution for (1). Then h :# 0 and x* + Xh E S for all x* E S and all X > 0.…”
Section: Lemma 1 Let S 4= ~ Z(x) Is Not Lexicographieally Bounded Fmentioning
confidence: 97%
“…all ~ E S with Cx' ~ C~ for no x' E S. Note that for k = 1 (LLP) reduces to an ordinary linear program. Several mathematical and game-theoretic applications of nonlinear lexicographic optimization are reported in [1 ]. Moreover this contribution establishes a procedure how a lexicographic optimization problem can be reduced to a family of k one-objective programming problems.…”
Section: Zk(x))mentioning
confidence: 98%
“…As, by assumption, (1) has no solution,.~ is optimal for (LLP). In order to prove the backward implication of (i), let x" be a solution for (1) and assume, to the contrary, that (LLP) has an optimal solution, say x ~ . As x ~ + x" E S and z(x ~ + x") ~ z(x~ we obtain a contradiction to the assumption.…”
Section: Lemma 2 Problem (Llp) Has No Optimal Solution If and Onlymentioning
Summary. The relevance of lexicographic optimization may be located in the field of multiple criteria decision making as well as in mathematical programming. In this paper we shall introduce the lexicographic simplex method and the underlying existence and duality theory. Some applications of lexicographic optimization will also be outlined.Zusammenfassung. Dieser Beitrag besch~iftigt sich mit dem linearen lexikographischen Optimierungsproblem. Es werden Anwendungen dargestellt sowie ein L6sungs-verfahren und die ihm zugrunde liegende Existenz-und Dualit~tstheorie vorgestellt.
“…Thus h is a solution for (1). Now, let h be a solution for (1). Then h :# 0 and x* + Xh E S for all x* E S and all X > 0.…”
Section: Lemma 1 Let S 4= ~ Z(x) Is Not Lexicographieally Bounded Fmentioning
confidence: 97%
“…all ~ E S with Cx' ~ C~ for no x' E S. Note that for k = 1 (LLP) reduces to an ordinary linear program. Several mathematical and game-theoretic applications of nonlinear lexicographic optimization are reported in [1 ]. Moreover this contribution establishes a procedure how a lexicographic optimization problem can be reduced to a family of k one-objective programming problems.…”
Section: Zk(x))mentioning
confidence: 98%
“…As, by assumption, (1) has no solution,.~ is optimal for (LLP). In order to prove the backward implication of (i), let x" be a solution for (1) and assume, to the contrary, that (LLP) has an optimal solution, say x ~ . As x ~ + x" E S and z(x ~ + x") ~ z(x~ we obtain a contradiction to the assumption.…”
Section: Lemma 2 Problem (Llp) Has No Optimal Solution If and Onlymentioning
Summary. The relevance of lexicographic optimization may be located in the field of multiple criteria decision making as well as in mathematical programming. In this paper we shall introduce the lexicographic simplex method and the underlying existence and duality theory. Some applications of lexicographic optimization will also be outlined.Zusammenfassung. Dieser Beitrag besch~iftigt sich mit dem linearen lexikographischen Optimierungsproblem. Es werden Anwendungen dargestellt sowie ein L6sungs-verfahren und die ihm zugrunde liegende Existenz-und Dualit~tstheorie vorgestellt.
“…1 K o r o l l a r z u S a t z 4.5 (stark halbstetig glelch .5-halhstetlg) Linter den. Yoraussetzungen von Satz 4.5 gilt: f stark halbstetig nnch oben (unten)]+[f A -halbstetig nach oben [ ( u n t e n ) ] o [ f <-halbstetig nnch oben (unten)].Analog zu dem Vorgehen von PIRZL[15] wollen wir nun noch auf die Umkehrung des Maximalelementsatzes in Korollar I und 2 zu Satz 3.2 eingehen.F e s t s t el l u n g 4.4 (Ordnungskompaktheit bei Existenz eines maximalen Elementes) : Hat die Quasiordnung ( Y ,5 ) ein 5 -maximaies Eiement, dann ist Y in der <-Obertopologie und damit in jeder zu dieser groberen Topologie kompakt. PIRZL[15] bewies diese Aussage fur (Y, 5 ) Halbordnung.…”
Zusammenfassung: Elne ituf emer nichtleeren und kompakten Teilmenge eines tupolugischen Raumes nach oben halbetetige reellwertige Funktion f nimmt dort einen maximalen Wert m. 3fan liennt dies? P-lvsrsge aurh fiir halhordn~ingswertige f. Die vorliegende Arbeit untersucht sie fiir quasiordnungswertige I;. Die Halbstetigkeit von f wird iibcr N~v u~u -mengen der Form {z EX j a 3 j(xj) und {x CX / ! ! x j : 2-4 5 untersuc'nt,
“…A lexicographic approach is one such technique that can guarantee Pareto-optimality of multiobjective optimization problems. Several mathematical nonlinear lexicographic optimizations have been reported by Behringer (1977). This type of optimization is studied by arranging objective functions in lexicographic order i.e.…”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.