Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga 3 þ ,Mn 2 þ ) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba 1 À x K x )(Zn 1 À y Mn y ) 2 As 2 , which is isostructural to the 122 iron-based superconductors with the tetragonal ThCr 2 Si 2 (122) structure. Holes are doped via (Ba 2 þ , K 1 þ ) replacements, while spins via isovalent (Zn 2 þ ,Mn 2 þ ) substitutions. Bulk samples with x ¼ 0.1 À 0.3 and y ¼ 0.05 À 0.15 exhibit ferromagnetic order with T C up to 180 K, which is comparable to the highest T C for (Ga,Mn)As and significantly enhanced from T C up to 50 K of the '111'-based Li(Zn,Mn)As. Moreover, ferromagnetic (Ba,K)(Zn,Mn) 2 As 2 shares the same 122 crystal structure with semiconducting BaZn 2 As 2 , antiferromagnetic BaMn 2 As 2 and superconducting (Ba,K)Fe 2 As 2 , which makes them promising for the development of multilayer functional devices.