Facial muscles play an important role in a vast range of physiological functions, ranging from mastication to communication. Any disruption in their normal function may lead to serious negative effects on human well-being. A very wide range of medical disorders and conditions in psychology, neurology, psychiatry, and cosmetic surgery are related to facial muscles, and scientific explorations spanning over decades exposed many fascinating phenomena. For example, expansive evidence implicates facial muscle activation with the expression of emotions. Yet, the exact manner by which emotions are expressed is still debated: Whether facial expressions are universal, how gender and cultural differences shape facial expressions and if and how facial muscle activation shape the internal emotional state. Surface electromyography (EMG) is one of the best tools for direct investigation of facial muscle activity and can be applied for medical and research purposes. The use of surface EMG has been so far restricted, owing to limited resolution and cumbersome setups. Current technologies are inconvenient, interfere with the subject normal behavior, and require know-how in proper electrode placement. High density electrode arrays, based on soft skin technology, is a recent development in the realm of surface EMG. It opens the door to perform facial EMG (fEMG) with high signal quality, while maintaining significantly more natural environmental conditions and higher data resolution. Signal analysis of multi-electrode recordings can also reduce crosstalk to achieve single muscle resolution. This perspective paper presents and discusses new opportunities in mapping facial muscle activation, brought about by this technological advancement. The paper briefly reviews some of the main applications of fEMG and presents how these applications can benefit from a more precise and less intrusive technology.