Electromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings. Here we present novel dry electrodes, exhibiting outstanding electromyography recording along with excellent user comfort. The electrodes were realized using screen-printing of carbon ink on a soft support. The conformity of the electrodes helps establish direct contact with the skin, making the use of a gel superfluous. Plasma polymerized 3,4-ethylenedioxythiophene was used to enhance the impedance of the electrodes. Cyclic voltammetry measurements revealed an increase in electrode capacitance by a factor of up to 100 in wet conditions. Impedance measurements show a reduction factor of 10 in electrode impedance on human skin. The suitability of the electrodes for long-term electromyography recordings from the hand and from the face is demonstrated. The presented electrodes are ideally-suited for many applications, such as brain-machine interfacing, muscle diagnostics, post-injury rehabilitation, and gaming.
Human facial expressions are a complex capacity, carrying important psychological and neurological information. Facial expressions typically involve the co-activation of several muscles; they vary between individuals, between voluntary versus spontaneous expressions, and depend strongly on personal interpretation. Accordingly, while high-resolution recording of muscle activation in a non-laboratory setting offers exciting opportunities, it remains a major challenge. This paper describes a wearable and non-invasive method for objective mapping of facial muscle activation and demonstrates its application in a natural setting. We focus on muscle activation associated with “enjoyment”, “social” and “masked” smiles; three categories with distinct social meanings. We use an innovative, dry, soft electrode array designed specifically for facial surface electromyography recording, a customized independent component analysis algorithm, and a short training procedure to achieve the desired mapping. First, identification of the orbicularis oculi and the levator labii superioris was demonstrated from voluntary expressions. Second, the zygomaticus major was identified from voluntary and spontaneous Duchenne and non-Duchenne smiles. Finally, using a wireless device in an unmodified work environment revealed expressions of diverse emotions in face-to-face interaction. Our high-resolution and crosstalk-free mapping, along with excellent user-convenience, opens new opportunities in gaming, virtual-reality, bio-feedback and objective psychological and neurological assessment.
Objective. Circadian and sleep dysfunction have long been symptomatic hallmarks of a variety of devastating neurodegenerative conditions. The gold standard for sleep monitoring is overnight sleep in a polysomnography (PSG) laboratory. However, this method has several limitations such as availability, cost and being labour-intensive. In recent years there has been a heightened interest in home-based sleep monitoring via wearable sensors. Our objective was to demonstrate the use of printed electrode technology as a novel platform for sleep monitoring. Approach. Printed electrode arrays offer exciting opportunities in the realm of wearable electrophysiology. In particular, soft electrodes can conform neatly to the wearer’s skin, allowing user convenience and stable recordings. As such, soft skin-adhesive non-gel-based electrodes offer a unique opportunity to combine electroencephalography (EEG), electromyography (EMG), electrooculography (EOG) and facial EMG capabilities to capture neural and motor functions in comfortable non-laboratory settings. In this investigation temporary-tattoo dry electrode system for sleep staging analysis was designed, implemented and tested. Main results. EMG, EOG and EEG were successfully recorded using a wireless system. Stable recordings were achieved both at a hospital environment and a home setting. Sleep monitoring during a 6 h session shows clear differentiation of sleep stages. Significance. The new system has great potential in monitoring sleep disorders in the home environment. Specifically, it may allow the identification of disorders associated with neurological disorders such as rapid eye movement (REM) sleep behavior disorder.
Objective. Human facial muscle activation underlies highly sophisticated signaling mechanisms that are critically important for healthy physiological function. Accordingly, the necessity to analyze facial muscle activation at high-resolution and in a non-invasive manner is important for the diagnosis and treatment of many medical conditions. However, current clinical examination methods are neither precise nor quantitative. Approach. Wearable, multi-channel surface electromyography can provide a solution to this yet unmet challenge. Here, we present the design and testing of a customized surface electromyography electrode array for facial muscle mapping. Main results. Muscle activation maps were derived from repeated voluntary facial muscle activations. A customized independent component analysis algorithm and a clustering algorithm were developed to identify consistent building block activation patterns within and between participants. Finally, focusing on spontaneous smile analysis and relying on the building block mapping, we classified muscle activation sources, revealing a consistent intra-subject activation and an inter-subject variability. Significance. The herein described approach can be readily used for automated and objective mapping of facial expressions in general and in the assessment of normal and abnormal smiling in particular.
Electromyography of the zygomaticus major and the corrugator supercilii muscles is a well-established technique to capture positive and negative emotional affect. Despite the great potential, its wide adoption has been so far limited owing to several lingering technical limitations in contemporary electromyography electrodes. In this paper, we report on new printed electrode arrays, specifically designed to capture emotional affect, focusing on their unique and advantageous properties compared with conventional gelled electrodes. Inkjet-or screen-printing, combined with film cutting and lamination techniques, were used to produce customized electrode arrays. Conformity with the skin was guaranteed by printing on very thin and soft films. Unlike conventional gelled-surface electromyography electrodes, the printed electrode arrays are dry, allowing long-term and stable recording. Moreover, the large electrode arrays can be rapidly and conveniently placed on the subject's face, maintaining excellent electrode-skin compliance. Muscle localization was achieved despite inter-subject variability in facial features and electrode array position, as a result of high spatial resolution and source separation methodology. The presented electrode arrays open new opportunities in brain-machine interfacing, well-being investigations and mood monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.