In this study, multilayer organic light-emitting diodes (OLEDs) consisting of three solution-processed layers are fabricated using slot die coating, gravure printing, and inkjet printing, techniques that are commonly used in the industry. Different technique combinations are investigated to successively deposit a hole injection layer (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)), a cross-linkable hole transport layer (N,N′-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)-hexyloxy)phenyl)-N,N′-bis(4-methoxyphenyl)biphenyl-4,4′-diamin (QUPD)), and a green emissive layer (TSG-M) on top of each other. In order to compare the application techniques, the ink formulations have to be adapted to the respective process requirements. First, the influence of the application technique on the layer homogeneity of the different materials is investigated. Large area thickness measurements of the layers based on imaging color reflectometry (ICR) are used to compare the application techniques regarding the layer homogeneity and reproducible film thickness. The total stack thickness of all solution-processed layers of 32 OLEDs could be reproduced homogeneously in a process window of 30 nm for the technique combination of slot die coating and inkjet printing. The best efficiency of 13.3 cd A−1 is reached for a process combination of slot die coating and gravure printing. In order to enable a statistically significant evaluation, in total, 96 OLEDs were analyzed and the corresponding 288 layers were measured successively to determine the influence of layer homogeneity on device performance.