Background: ADP ribosylation factor 6 (ARF6) is a member of the Rat sarcoma virus (RAS) superfamily that is involved in the regulation of vesicular trafficking, membrane lipid remodeling, and signaling pathways.Our earlier work discovered that ARF6, as a downstream effector of the Kirsten rat sarcoma viral oncogene (Kras)/extracellular signal-regulated kinases (ERK) signaling pathway, may increase proliferation and induce the Warburg effect in gastric cancer (GC) cells. Additionally, ARF6 appears to be a potential biomarker for predicting the prognosis of GC. Ferroptosis has recently been described as a type of nonapoptotic irondependent cell death that is strongly associated with the Kras mutation. Therefore, it is critical to continue investigating the link between ARF6 and ferroptosis.Methods: We first created ARF6 silenced cancer cell lines with lentivirus transfection. The knockdown efficiency was confirmed through quantitative polymerase chain reaction (qPCR) and western blotting.Subsequently, we used Cell Counting Kit-8 (CCK-8) and malondialdehyde (MDA) assay for lipid peroxidation measurement. Following this, qPCR and western blotting were conducted to clarify the mechanism involved. Finally, immunohistochemistry was used to stain human GC samples.Results: Our findings established that, whereas ARF6 did not directly regulate lipid peroxidation, it did render GC cells susceptible to oxidative stress, particularly erastin-induced lipid peroxidation. Additionally, our research demonstrated that ARF6 may control capecitabine resistance via several routes.Conclusions: ARF6 may play a critical role in the development of GC.