Editorial on the Research Topic Atmosphere-Cryosphere Interaction in the Arctic, at High Latitudes and Mountains With Focus on Transport, Deposition, and Effects of Dust, Black Carbon, and Other Aerosols Atmosphere and cryosphere are closely linked and therefore need to be investigated as an interdisciplinary subject. Most of the cryospheric areas have undergone severe changes in recent decades, while such areas have been more fragile and less adaptable to global climate change (Boy et al., 2019). Atmospheric air pollutants, in particular black carbon (BC) and dust, are deposited on clean snow, land ice or sea ice surfaces, and decrease their albedo. Due to albedo-feedback, snow and ice are melting faster and seasonal snow cover earlier. Impacts of ice loss include reduction in the Earth's albedo and, as a positive feedback, this leads to further warming (Flanner et al., 2007), as for example in the Arctic region. Albedo is wavelength dependent and typically very high for clean snow, and decreases as a function of snow age, snow grain size, and impurity content (e.g., Warren and Wiscombe, 1980; Aoki et al., 2000; Gardner and Sharp, 2010). It is estimated that Arctic snow albedo is reduced primarily due to BC, but other impurities can also contribute to absorption, such as organic or brown carbon (Doherty et al., 2010). Surface albedo feedback has been found as the second main contributor to Arctic amplification (Pithan and Mauritsen, 2014), and BC deposition to snow and ice can strongly contribute to the darkening via black-carbon-on-snow forcing (Bond et al., 2013). The role of BC in snow and ice has been widely investigated, and detailed scientific assessments have been presented in Bond et al. (2013), Intergovernmental Panel on Climate Change (IPCC) (2013), and AMAP (2015). Seemingly small amounts of BC in snow, of the order of 10-100 parts per billion by mass (ppb), have shown to decrease its albedo by 1-5% (Hadley and Kirchstetter, 2012). A reduction in snow-surface density due to light absorbing impurities has been documented (Meinander et al., 2014; Skiles and Painter, 2017), and BC has also been suggested as disturbing the water holding capacity of snow (Meinander et al., 2014). Dust has been identified as reducing snow albedo in many parts of the world, for example the Chilean Andes,