Context. We report the relationship between the Gaia–VLBI position differences and the magnitudes of source structure effects in VLBI observations. Aims. Because the Gaia–VLBI position differences are statistically significant for a considerable number of common sources, we discuss and attempt to explain these position differences based on VLBI observations and available source images at centimeter wavelengths. Methods. Based on the derived closure amplitude root mean square (CARMS), which quantifies the magnitudes of source structure effects in the VLBI observations used for building the third realization of the International Celestial Reference Frame, the arc lengths and normalized arc lengths of the position differences are examined in detail. The radio-jet directions and the directions of the Gaia–VLBI position differences are investigated for a small sample of sources. Results. Both the arc lengths and normalized arc lengths of the Gaia and VLBI positions are found to increase with the CARMS values. The majority of the sources with statistically significant position differences are associated with the sources having extended structure. Radio source structure is the one of the major factors of these position differences, and it can be the dominant factor for a number of sources. The vectors of the Gaia and VLBI position differences are parallel to the radio-jet directions, which is confirmed via stronger evidence.
Images of radio sources at the four bands were derived directly from VGOS broadband observations.• Source structure effects in VGOS observations were modeled and verified.• The alignments of the images at the various frequency bands were revealed to be very important in correcting source structure effects in VGOS observations.
It is shown that the degree of polarization analysis is useful to find objective spectra of exoplanets immersed in noisy stellar spectra. We report the laboratory experiment of polarization differential objective spectroscopy with a four-quadrant polarization mask coronagraph, where partially polarized planetary signal is expected to be discerned from unpolarized stellar noise. The detection of the planet signal is impeded by the stellar noise remained after subtracting mutually orthogonally polarized components of light. We distinguish clearly the planetary spectrum by use of the degree of polarization. We also show the refinement of the spectrum of the planet model.
The light-scattering properties of volcanic sand collected in Iceland are studied here to characterize the sand particles and develop a reference for future remote-sensing observations. While such sand is common in Iceland, the smaller-size fraction can be readily transported by winds and found in the atmosphere at distant locations. The sand appears dark when deposited on a surface due to the high optical absorption of the material. Therefore, atmospheric regions containing such particles during a dust storm may absorb sunlight considerably, causing redistribution of solar energy. Here, we measure the angular scattered-light intensity and degree of linear polarization from the sand. This is done with two experimental apparatuses, the Cosmic Dust Laboratory (CoDuLab) at the Institute de Astrofísica de Andalucía (IAA) and the goniospectropolarimeter (FIGIFIGO) at the Finnish Geospatial Research Institute (FGI). Two scattering-scenarios of practical interest for remote-sensing applications are
The Umov effect manifests itself as an inverse correlation between the light-scattering maximum of positive polarization Pmax and the geometric albedo A of the target. In logarithmic scales, Pmax is linearly dependent on A. This effect has been long known in the optics of particulate surfaces and, recently, it was extended for the case of single-scattering dust particles whose size is comparable to the wavelength of the incident light. In this work, we investigate the effect of irregular shape on the Umov effect in single-scattering particles. Using the discrete dipole approximation (DDA), we model light scattering by two different types of irregularly shaped particles. Despite significant differences in their morphology, both types of particles reveal remarkably similar diagrams of log(Pmax) versus log(A). Moreover, in a power-law size distribution r-n with n=2.5-3.0, the Umov diagrams in both types of particles nearly coincide. This suggests little dependence on the shape of target particles in the retrieval of their reflectance using the Umov effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.