We investigated the surface reflectance of nanoimprinted textures on silicon. Zirconium oxide, which is a wide-bandgap inorganic dielectric material, was used as the texturing material. We performed several calculations to optimize the textures for the production of high-efficiency bulk-type monocrystalline silicon solar cells. Our analysis revealed that nanoimprinted textured solar cells exhibit a lower reverse saturation current density than a solar cell with a conventional etched texture. It was also confirmed that the photocarrier generation rate for a solar cell with a submicron-scale nanoimprinted texture has little dependence on the texture shape. Furthermore, the weighted average reflectance of an optimized nanoimprinted textured solar cell was substantially reduced to 3.72%, suggesting that texture formation by nanoimprint lithography is an extremely effective technology for producing high-efficiency solar cells at a low cost.