2015
DOI: 10.2139/ssrn.2616602
|View full text |Cite
|
Sign up to set email alerts
|

Likelihood Based Inference and Prediction in Spatio-Temporal Panel Count Models for Urban Crimes

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

1
7
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(8 citation statements)
references
References 40 publications
1
7
0
Order By: Relevance
“…, n j =1 anj ) so that each row sum of Wn is scaled to one. By these two plots, it can be seen that {y (1) it } and {y (2) it } are clearly spatially correlated.…”
Section: Data Examplesmentioning
confidence: 97%
See 4 more Smart Citations
“…, n j =1 anj ) so that each row sum of Wn is scaled to one. By these two plots, it can be seen that {y (1) it } and {y (2) it } are clearly spatially correlated.…”
Section: Data Examplesmentioning
confidence: 97%
“…To find a strong confirmation of the "broken-windows" phenomenon (20), we compare the differences in modeling of {y (1) i,t } without or with {y (2) i,t }. For the former one, we accordingly replace Zt by Z * t by deleting the second column of Zt .…”
Section: Data Examplesmentioning
confidence: 99%
See 3 more Smart Citations