Cocaine treatment paired with environmental cues establishes a conditioned place preference (CPP) for that environment. After expression of this preference, rats show elevated levels of immediate early genes (IEGs; e.g. c-fos) in the prelimbic cortex (PrL), basolateral amygdala complex (BLC), and nucleus accumbens core (NAcc) compared with drug-unpaired controls. These findings, together with the known connections between these regions, suggest that they function as a circuit contributing to cue-elicited craving. To investigate the function of this circuit during drug-seeking, we characterized Fos immunoreactivity of particular neuron classes in each region. To distinguish between IEG activation of GABAergic and non-GABAergic (principally, excitatory projection) neurons, we combined Fos immunohistochemistry with immunohistochemistry for glutamic acid decarboxylase 67 (GAD 67 ) or calcium/calmodulin-dependent protein kinase II (CAMKII) proteins. Within the BLC and NAcc of drug-paired and drug-unpaired animals tested for CPP, we observed no significant differences in the percentage of Fos-immunoreactive (IR) cells that were also GAD 67 -IR. We also observed no group difference in the degree of Fos/CAMKII overlap in the BLC. However, in PrL, the degree of Fos/GAD 67 overlap in the drug-paired group was significantly higher than in the drug-unpaired group. Also, the Fos/CAMKII overlap in the entire PrL as well as just its layer V was significantly lower in the drug-paired animals compared with controls. These findings suggest that, during CPP expression in cocainepaired animals, the PrL GABAergic interneurons are preferentially activated while PrL output is attenuated, perhaps through greater inhibition of layer V pyramidal neurons. These results suggest a shifting prefrontal cortex cell population response during cocaineseeking.