Mid-Infrared nonlinear optical (Mid-IR NLO) crystals with excellent performances play a particularly important role for applications in areas such as telecommunications, laser guidance, and explosives detection. However, the design and growth of high performance Mid-IR NLO crystals with large NLO efficiency and high laser-damage threshold (LDT) still face numerous fundamental challenge. In this study, two potential Mid-IR NLO materials, Rb2LiVO4 (RLVO) and Cs2LiVO4 (CLVO) with noncentrosymmetric structures (Orthorhombic, Cmc21) were synthesized by high-temperature solution method. Thermal analysis and powder X-ray diffraction demonstrate that RLVO and CLVO melt congruently. Centimeter sized crystals of CLVO have been grown by the top-seeded solution growth method. RLVO and CLVO exhibit strong second harmonic generation (SHG) effects (about 4 and 5 times that of KH2PO4, respectively) with a phase-matching behavior at 1.064 μm, and a wide transparency range (0.33–6.0 μm for CLVO). More importantly, RLVO and CLVO possess a high LDT value (~28 × AgGaS2). In addition, the density functional theory (DFT) and dipole moments studies indicate that the VO4 anionic groups have a dominant contribution to the SHG effects in RLVO and CLVO. These results suggest that the title compounds are promising NLO candidate crystals applied in the Mid-IR region.